Wen-bing Ding | Molecular Biology | Pioneer Researcher Award

Prof. Wen-bing Ding | Molecular Biology | Pioneer Researcher Award

College of Plant Protection, Hunan Agricultural University | China

Dr. Wenbing Ding is an accomplished researcher at Hunan Agricultural University whose work has significantly advanced the molecular biology of insect physiology and sustainable pest management. His academic excellence is reflected in his global research influence, with 461 citations, 55 publications, and an h-index of 14, underscoring his growing impact within agricultural biotechnology and entomological sciences. Dr. Ding’s research centers on gene regulation, reproductive pathways, and innovative RNA interference (RNAi)-based strategies targeting major agricultural pests, particularly Chilo suppressalis and Sogatella furcifera. His recent contributions include elucidating the regulatory role of transcription factor E93 in vitellogenesis, demonstrating the reproductive disruption caused by HR3 knockdown, and exploring CRISPR/Cas9-mediated doublesex gene editing to impair fertility and sexual dimorphism advances that collectively strengthen the scientific foundation for next-generation, eco-friendly pest control technologies. Dr. Ding has also contributed to phytochemical research through the characterization of novel heterocyclic pseudoguaianolide derivatives, reflecting the breadth of his scientific versatility. With over 93 co-authors and collaborations across molecular biology, crop protection, and biochemical research communities, his work demonstrates strong interdisciplinary integration and international engagement. His publications across leading journals such as Molecular Biology Reports, Pest Management Science, Insect Biochemistry and Molecular Biology, and Phytochemistry highlight his commitment to high-impact scientific dissemination. Dr. Ding’s research contributes meaningfully to global food security by promoting molecular insights that can be translated into sustainable agricultural practices, reduced pesticide dependency, and enhanced crop resilience. His continued contributions position him as an influential and forward-looking scientist driving innovation at the interface of insect molecular genetics and sustainable pest management.

Profiles: Scopus | ORCID | ResearchGate

Featured Publications

  1. Ding, W., et al. (2025). Transcription factor E93 regulates vitellogenesis via the vitelline membrane protein 26Ab gene in Chilo suppressalis. Molecular Biology Reports. (Citations: 2)

  2. Ding, W., et al. (2025). Silencing the serine/threonine kinase Akt gene disrupts reproductive physiology in Sogatella furcifera and confers RNAi-mediated insect resistance in rice. Pest Management Science.

  3. Ding, W., et al. (2025). RNA interference knockdown of the nuclear receptor HR3 suppresses vitellogenesis in Chilo suppressalis. Molecular Biology Reports. (Citations: 1)

  4. Ding, W., et al. (2025). Doublesex knockout via CRISPR/Cas9 disrupts fertility and sexual dimorphism of wings in the rice stem borer Chilo suppressalis. Insect Biochemistry and Molecular Biology. (Citations: 0)

  5. Ding, W., et al. (2025). Heterocyclic pseudoguaianolide oligomers and seco-pseudoguaianolide derivatives from the inflorescence of Ambrosia artemisiifolia. Phytochemistry. (Citations: 1)

Marziyeh Saghebjoo | Molecular Biology | Editorial Board Member

Prof. Marziyeh Saghebjoo | Molecular Biology | Editorial Board Member 

Academic Staff | University of Birjand | Iran

Professor Marziyeh Saghebjoo is a leading scholar in exercise physiology whose research has significantly advanced understanding of exercise–induced metabolic regulation, obesity management, and clinical exercise interventions. Her academic influence is demonstrated through 373 citations by 327 documents, 55 publications, and an h-index of 12, reflecting sustained contributions to sport sciences and human metabolic health. Her work spans exercise nutrition, weight-control mechanisms, hormonal responses to training, and exercise-based strategies for chronic disease prevention, with a strong emphasis on obesity, hypertension, and cancer-related metabolic pathways. She has produced impactful studies on high-intensity interval training, combined dietary–exercise models, home-based cardiovascular rehabilitation, and exercise–nutrient interactions, including investigations into gut microbiota modulation, insulin sensitivity, inflammatory markers, and molecular regulators such as miRNAs, VEGF, HIF-1α, ghrelin, and obestatin. Her collaborations with multidisciplinary research teams in physiology, nutrition, biochemistry, and clinical sciences have resulted in publications in internationally indexed journals and translational outputs relevant to public health and athletic performance. In addition to her research productivity, she has contributed to scientific dissemination through editorial board service and active involvement in professional academic committees, helping shape research quality, ethics, and development in sport sciences. Her scholarship consistently integrates laboratory, clinical, and performance-based methodologies, generating evidence that supports healthier lifestyles, improved metabolic outcomes, and enhanced exercise-based therapeutic interventions. Through her sustained commitment to advancing scientific knowledge and mentoring future researchers, Professor Saghebjoo continues to influence global discussions on exercise, health, and metabolic disease prevention.

Featured Publications
  1. Ghanbari-Niaki, A., Saghebjoo, M., & Hedayati, M. (2011). A single session of circuit-resistance exercise effects on human peripheral blood lymphocyte ABCA1 expression and plasma HDL-C level. Regulatory Peptides, 166(1–3), 42–47. Citations: 81

  2. Nezamdoost, Z., Saghebjoo, M., Hoshyar, R., Hedayati, M., & Keska, A. (2020). High-intensity training and saffron: Effects on breast cancer-related gene expression. Medicine and Science in Sports and Exercise, 52(7), 1470–1476. Citations: 73

  3. Ghanbari-Niaki, A., Saghebjoo, M., Soltani, R., & Kirwan, J. P. (2010). Plasma visfatin is increased after high-intensity exercise. Annals of Nutrition and Metabolism, 57(1), 3–8. Citations: 71

  4. Saedmocheshi, S., Saghebjoo, M., Vahabzadeh, Z., & Sheikholeslami-Vatani, D. (2019). Aerobic training and green tea extract protect against N-methyl-N-nitrosourea-induced prostate cancer. Medicine and Science in Sports and Exercise, 51(11), 2210–2216. Citations: 67

  5. Ghanbari-Niaki, A., Saghebjoo, M., Rahbarizadeh, F., Hedayati, M., & Rajabi, H. (2008). A single circuit-resistance exercise has no effect on plasma obestatin levels in female college students. Peptides, 29(3), 487–490. Citations: 51