Hossein Ghaffarian | Machine Learning | Editorial Board Member

Dr. Hossein Ghaffarian | Machine Learning | Editorial Board Member 

Assistant Professor | Arak University | Iran

Dr. Hossein Ghaffarian is a distinguished researcher and faculty member in the Department of Computer Engineering at Arak University, Iran, recognized for his expertise in computer networks, intelligent transportation systems (ITS), data mining, and applied artificial intelligence. His academic contributions encompass both theoretical and applied dimensions of wired and wireless network architectures, network security, and quality of service optimization. Dr. Ghaffarian’s scholarly work demonstrates a strong interdisciplinary orientation, bridging computer systems architecture with real-world applications in vehicular ad hoc networks (VANETs), indoor localization, and cloud-based network solutions. He has served in multiple academic and professional capacities, including as IT and Product Manager at Sanaat Yar Afzar Iranian and consultant for Iran’s Ministry of Education and the Electrical Industry Data Committee (Tavanir). His innovative research has earned national recognition, including a Best Paper Award at the IEEE International Conference on Internet of Things and Applications. Dr. Ghaffarian has also contributed to key industrial and governmental projects, such as developing WAN solutions for electrical industries and designing cloud-based monitoring systems. His research achievements are further complemented by his active engagement in academic translation and technical education, with works such as Python Numpy for Beginners and Python Pandas for Beginners (Farsi editions). Dr. Hossein Ghaffarian’s academic impact is reflected in his international research visibility, with 82 citations by 81 documents, 21 publications, and an h-index of 4, underscoring his growing influence in computer engineering and artificial intelligence research.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate

Featured Publications

  1. Ghaffarian, H., Fathy, M., & Soryani, M. (2012). Vehicular ad hoc networks enabled traffic controller for removing traffic lights in isolated intersections based on integer linear programming. IET Intelligent Transport Systems, 6(2), 115–123. Citations: 52

  2. Farahani, B. J., Ghaffarian, H., & Fathy, M. (2009). A fuzzy based priority approach in mobile sensor network coverage. International Journal of Recent Trends in Engineering, 2(1), 138. Citations: 19

  3. Rashvand, H. F., & Chao, H. C. (2013). Dynamic ad hoc networks. Institution of Engineering and Technology. Citations: 18

  4. Parvin, H., Minaei-Bidgoli, B., & Ghaffarian, H. (2011). An innovative feature selection using fuzzy entropy. In International Symposium on Neural Networks (pp. 576–585). Citations: 16

  5. Keramatpour, A., Nikanjam, A., & Ghaffarian, H. (2017). Deployment of wireless intrusion detection systems to provide the most possible coverage in wireless sensor networks without infrastructures. Wireless Personal Communications, 96(3), 3965–3978. Citations: 15

Rong Wang | Artificial Intelligence | Best Researcher Award

Mrs. Rong Wang | Artificial Intelligence | Best Researcher Award

Postdoc | University of Tuebingen | Germany

Mrs. Rong Wang is a postdoctoral researcher at the Eberhard Karls University of Tübingen, Germany, specializing in computational linguistics and the evaluation and optimization of large language models (LLMs). She holds an M.Sc. in Computational Linguistics (NLP) from the University of Stuttgart (Grade: 1.7, 2024) and a Ph.D. in Digital Humanities from Zhejiang University, China (2016). Her interdisciplinary academic background bridges computer science, linguistics, and AI-driven humanities research, reflecting her ability to apply quantitative and symbolic methods to linguistic and cognitive studies. Professionally, she has served as a Postdoctoral Fellow at the University of Tübingen, AI Engineer at Telus International Digital AI, AGI Engineer Intern at Deepseek AI, Data Scientist at DEKRA GmbH, and Assistant Professor of Linguistics at Hangzhou Dianzi University. Her research focuses on language model evaluation metrics, neural-symbolic reasoning, multimodal semantics, and automated linguistic assessment. She has contributed to projects on enhancing spatial reasoning in LLMs, multi-agent AI systems, and personality recognition models, alongside authoring several publications on machine learning applications in cognitive linguistics and NLP evaluation. Technically proficient in Python, R, JavaScript, and SQL, she is experienced with frameworks such as LangChain, Autogen, Hugging Face, and PyTorch, and cloud platforms including Azure ML and AWS SageMaker. Her certifications include Azure Certified Data Scientist Associate and AWS Certified AI Practitioner. Mrs. Wang is fluent in English, German, and Chinese, with working knowledge of Japanese, and is recognized for her strong teamwork, communication, and leadership abilities. Her recent works have appeared in Data Intelligence, Psychology Methods, and TMLR, demonstrating her innovative contributions to the AI and NLP research community. (0 Citations ; 2 Documents ; 0 h-index.)

Profiles: Scopus | ResearchGate

Featured Publications

Wang, R., Sun, K., & Kuhn, J. (2024, Dec). Dspy-based neural-symbolic pipeline to enhance spatial reasoning in LLMs [Preprint]. arXiv. https://arxiv.org/abs/2411.18564

Wang, R., Sun, K., & Kuhn, J. (2024, Nov). A pipeline of neural-symbolic integration to enhance spatial reasoning in large language models [Preprint]. arXiv. https://arxiv.org/abs/2411.18564

Sun, K., & Wang, R. (2024, Oct). The roles of contextual semantic relevance metrics in human visual processing [Preprint]. arXiv. https://arxiv.org/abs/2410.09921

Wang, R., & Sun, K. (2024, Jul). A novel dependency framework for enhancing discourse data analysis [Preprint]. arXiv. https://arxiv.org/abs/2407.12473

Wang, R., & Sun, K. (2024, Jun). Continuous output personality detection models via mixed strategy training [Article]. arXiv. https://arxiv.org/abs/2406.16223